Share

Need help with straight pick 4 wheel

calabs's avatar - bass fret.jpg

For a pick 4 wheel which has 4 numbers, the required lines to get every combo straight would be 24 (I believe this is right).  This assumes no doubles or triples, etc.  What would be the minimum combination for a 5 number wheel?  What about a 6 number wheel?  Is there a formula anyone is willing to share?  Thanks!

cps10's avatar - Lottery-004.jpg

calabs - I think that is something  I am trying to get to as well. I was working with pairs though.

lottaloot's avatar - AvatarZ56

Option Explicit
 
 'Written by Myrna Larson - Microsoft Excel MVP
Dim vAllItems As Variant
Dim Buffer() As String
Dim BufferPtr As Long
Dim Results As Worksheet
 
 
Sub ListPermutations()
    Dim Rng As Range
    Dim PopSize As Integer
    Dim SetSize As Integer
    Dim Which As String
    Dim N As Double
    Const BufferSize As Long = 4096
   
   
    Set Rng = Range(Range("A1"), Cells(Rows.Count, "A").End(xlUp))
   
    PopSize = Rng.Cells.Count - 2
    If PopSize < 2 Then GoTo DataError
   
    SetSize = Rng.Cells(2).Value
    If SetSize > PopSize Then GoTo DataError
   
    Which = UCase$(Rng.Cells(1).Value)
    Select Case Which
    Case "C"
        N = Application.WorksheetFunction.Combin(PopSize, SetSize)
    Case "P"
        N = Application.WorksheetFunction.Permut(PopSize, SetSize)
    Case Else
        GoTo DataError
    End Select
    If N > Cells.Count Then GoTo DataError
   
    Application.ScreenUpdating = False
   
    Set Results = Worksheets.Add
   
    vAllItems = Rng.Offset(2, 0).Resize(PopSize).Value
    ReDim Buffer(1 To BufferSize) As String
    BufferPtr = 0
   
    If Which = "C" Then
        AddCombination PopSize, SetSize
    Else
        AddPermutation PopSize, SetSize
    End If
    vAllItems = 0
   
    Application.ScreenUpdating = True
    Exit Sub
   
DataError:
    If N = 0 Then
        Which = "Enter your data in a vertical range of at least 4 cells. " _
        & String$(2, 10) _
        & "Top cell must contain the letter C or P, 2nd cell is the number " _
        & "of items in a subset, the cells below are the values from which " _
        & "the subset is to be chosen."
       
    Else
        Which = "This requires " & Format$(N, "#,##0") & _
        " cells, more than are available on the worksheet!"
    End If
    MsgBox Which, vbOKOnly, "DATA ERROR"
    Exit Sub
End Sub
 
Private Sub AddPermutation(Optional PopSize As Integer = 0, _
    Optional SetSize As Integer = 0, _
    Optional NextMember As Integer = 0)
   
    Static iPopSize As Integer
    Static iSetSize As Integer
    Static SetMembers() As Integer
    Static Used() As Integer
    Dim i As Integer
   
    If PopSize <> 0 Then
        iPopSize = PopSize
        iSetSize = SetSize
        ReDim SetMembers(1 To iSetSize) As Integer
        ReDim Used(1 To iPopSize) As Integer
        NextMember = 1
    End If
   
    For i = 1 To iPopSize
        If Used(i) = 0 Then
            SetMembers(NextMember) = i
            If NextMember <> iSetSize Then
                Used(i) = True
                AddPermutation , , NextMember + 1
                Used(i) = False
            Else
                SavePermutation SetMembers()
            End If
        End If
    Next i
   
    If NextMember = 1 Then
        SavePermutation SetMembers(), True
        Erase SetMembers
        Erase Used
    End If
   
End Sub 'AddPermutation
 
Private Sub AddCombination(Optional PopSize As Integer = 0, _
    Optional SetSize As Integer = 0, _
    Optional NextMember As Integer = 0, _
    Optional NextItem As Integer = 0)
   
    Static iPopSize As Integer
    Static iSetSize As Integer
    Static SetMembers() As Integer
    Dim i As Integer
   
    If PopSize <> 0 Then
        iPopSize = PopSize
        iSetSize = SetSize
        ReDim SetMembers(1 To iSetSize) As Integer
        NextMember = 1
        NextItem = 1
    End If
   
    For i = NextItem To iPopSize
        SetMembers(NextMember) = i
        If NextMember <> iSetSize Then
            AddCombination , , NextMember + 1, i + 1
        Else
            SavePermutation SetMembers()
        End If
    Next i
   
    If NextMember = 1 Then
        SavePermutation SetMembers(), True
        Erase SetMembers
    End If
   
End Sub 'AddCombination
 
Private Sub SavePermutation(ItemsChosen() As Integer, _
    Optional FlushBuffer As Boolean = False)
   
    Dim i As Integer, sValue As String
    Static RowNum As Long, ColNum As Long
   
    If RowNum = 0 Then RowNum = 1
    If ColNum = 0 Then ColNum = 1
   
    If FlushBuffer = True Or BufferPtr = UBound(Buffer()) Then
        If BufferPtr > 0 Then
            If (RowNum + BufferPtr - 1) > Rows.Count Then
                RowNum = 1
                ColNum = ColNum + 1
                If ColNum > 256 Then Exit Sub
            End If
           
            Results.Cells(RowNum, ColNum).Resize(BufferPtr, 1).Value _
            = Application.WorksheetFunction.Transpose(Buffer())
            RowNum = RowNum + BufferPtr
        End If
       
        BufferPtr = 0
        If FlushBuffer = True Then
            Erase Buffer
            RowNum = 0
            ColNum = 0
            Exit Sub
        Else
            ReDim Buffer(1 To UBound(Buffer))
        End If
       
    End If
   
    'construct the next set
    For i = 1 To UBound(ItemsChosen)
        sValue = sValue & ", " & vAllItems(ItemsChosen(i), 1)
    Next i
   
    'and save it in the buffer
    BufferPtr = BufferPtr + 1
    Buffer(BufferPtr) = Mid$(sValue, 3)
End Sub 'SavePermutation

lottaloot's avatar - AvatarZ56

Here's what you do. 

Place C in A1

""      4 in A2

And the numbers that you want in A3: down to whatever

Run the code in order to see that wheels...There will be another sheet added to your workbook.

 

Doesn't give you straights but I am sure someone could tweak the system a bit to make it do straights. 

calabs's avatar - bass fret.jpg

thanks Lottaloot - WOW, that's way over my Excel head!  I was hoping for something a little less "intimidating"!

 

Like 4 numbers = 24 combos

Like 5 numbers = XX combos

Like 6 numbers  = XXX combos

 

Is something like this easy to crunch?  My guess is it would be way to staggering of a number to actually play all combos past 4 numbers, but would like to know.  Thanks again.

Raven62's avatar - binary

I'm not sure why you would want to unbox the pick4 numbers to their 24-way, 12-way, 6-way, 4-way combinations. A wealth of information exits in the forums and some of it can be found with the search function:

https://www.lotterypost.com/thread/108382

calabs's avatar - bass fret.jpg

I'm not sure why you would want to unbox the pick4 numbers to their 24-way, 12-way, 6-way, 4-way combinations. A wealth of information exits in the forums and some of it can be found with the search function:

https://www.lotterypost.com/thread/108382 

Inquiring minds want to know!!!Wink

 

I do a search.  Thanks.

time*treat's avatar - radar

If you want to know the number of permutations the formula is: n!/(n-r)!

calabs's avatar - bass fret.jpg

If you want to know the number of permutations the formula is: n!/(n-r)!

Thanks time*treat - Forgive my ignorance, but what is represented by r?

retxx's avatar - mrthumbs

now if someone can write it to a spreadsheet for us laymen maybe it might be the key to a winning system for the pick 4. Anyone want to give it a try?

cps10's avatar - Lottery-004.jpg

I Agree!

 

LOL

time*treat's avatar - radar

in this case r=4

0! = 1 and 1! = 1 so 4!/1 = 24

5!/1! = 5!/ (5-4)! = 5p4 = 120

6!/ (6-4)! = 6!/2! = 6p4 = 360 

7p4 = 840

8p4 = 1680

9p4 = 3024

10p4 = 5040 <-- that one should look familiar 

 

truecritic's avatar - PirateTreasure

If you box a 4 digit number for the Pick4, that will produce 24 possible combinations (as long as each digit is unique i.e. 1,2,3,4 not 1,2,2,3 or 1,2,2,2 or 1,1,1,1).  If you were to lay those out separately, you would have 24 tickets.  Boxing is simply a convenient way of making those bets.  If your digits are the correct ones that are drawn, by boxing (or playing each individually), you will have a straight hit.  The reason the payoff is smaller for a boxed $1 ticket is because you are dividing that $1 into 24 pieces.  If you wanted to be assured of a full $1 hit, you would purchase 24 individual ticket with 1 combination per ticket.

A 4 digit wheel is different.  It only produces 1234.  A single ticket.  A wheel assures that all the numbers are represented with each other.  It does not involve all the possible combinations of those digits.

A 5 digit wheel would be 5 plays or tickets that look like this:

1.  1  2  3  4
2.  1  2  3  5
3.  1  2  4  5
4.  1  3  4  5
5.  2  3  4  5

You could, if you wanted, to cover all combinations...box each of those tickets.  There is no secret "method or system" here.  You are simply placing bets to cover more than one ticket.  And we use those words, box/wheel to describe the process.

powerplayer's avatar - Lottery-022.jpg

For a pick 4 wheel which has 4 numbers, the required lines to get every combo straight would be 24 (I believe this is right).  This assumes no doubles or triples, etc.  What would be the minimum combination for a 5 number wheel?  What about a 6 number wheel?  Is there a formula anyone is willing to share?  Thanks!

I thought this might be usefull for everyone:

Singles,(ABCD)December,05

Key,Digit,(0):,3086,3052,2890,2406,5609,9508,3940,4201,9042,4350,3950,4091,4701,1820,1702,0678,4103,4270,1062,0753,9803,4069,9130,1905,2670,0937,2034,0896,7908,7640,2506,8250,3650,0841,0832,8074,6901,1086,3015,6805,0485,7310,0846,4028,0189,0718,0932,3740,2405,2690,9205,1750,0176,2031,2807,6034,5830,0794,4160,0971,1920,0936,2015,3870,9540,2750,0489,8340,8130,5740,0362,0679,5607,0637,6820,0581,2370

Key,Digit,(1):,,1928,8491,4201,4139,7126,7319,4157,5412,4091,1274,3164,4701,1820,1702,1359,4103,6751,1062,7215,1874,1465,9130,3124,1905,3912,1597,6951,4531,7134,2418,2316,0841,6901,1729,1086,8159,3015,7310,1562,0189,0718,1832,1357,1750,0176,1983,1862,2031,7581,9412,5186,2195,4915,1647,4160,0971,1538,3619,8631,1287,6841,1920,2015,1528,1387,7613,6197,8197,5231,8130,6918,1723,4813,7419,1768,6491,6531,0581,4162,

Key,Digit,(2):,3052,9725,1928,2890,9732,2406,4201,9042,7126,3472,2678,5412,1274,9842,9268,1820,1702,9724,4275,4270,1062,7215,2583,3124,3912,2670,2034,6925,2418,6429,7562,2506,8250,2316,2578,0832,2568,7283,1729,2634,2386,4028,1562,3928,0932,1832,2405,2690,9205,2963,6729,8425,3726,1862,5327,2031,9412,5392,2807,7248,2195,1287,1920,2354,2015,6742,1528,4392,2750,5231,9582,0362,1723,9287,2945,6820,2370,4162,

Key,Digit,(3):,3086,3052,9732,6453,5638,3940,4139,7349,4350,3472,7319,3950,3164,1359,5837,4103,2583,0753,9803,6347,9130,3124,3912,6943,0937,4863,2034,4531,7134,4953,9873,3650,2316,5936,4538,0832,9835,7283,2634,3015,7310,2386,3928,0932,3740,1832,1357,2963,3726,1983,5327,7953,2031,7453,5392,6034,5830,1538,3619,8631,0936,3984,2354,1387,4392,7613,3870,3784,5231,8340,8130,0362,3796,1723,4813,8637,7653,0637,6531,2370

Key,Digit,(4):2406,8491,6453,3940,5467,4201,4139,9042,7349,4350,3472,7649,4157,5412,4091,1274,9842,3164,4701,9724,4275,4103,4270,1874,1465,4069,6347,3124,6943,4863,2034,4531,7134,6498,4953,5864,2418,6429,7640,8479,4875,0841,4538,8074,2634,0485,0846,4028,4795,3740,2405,8425,8746,7453,9412,6034,0794,7248,4915,1647,4160,5849,6841,3984,2354,6742,4392,9540,3784,0489,8340,5740,4813,7419,6491,2945,4162,

Key,Digit,(5):3052,9725,6957,5609,9508,6453,5638,5467,4350,3950,4157,5412,1359,4275,5837,6751,7215,2583,0753,1465,1905,1597,6951,4531,6925,4953,5864,7562,2506,8250,3650,5936,2578,4875,4538,9835,2568,8159,3015,6805,0485,4795,1562,2405,1357,9205,1750,8425,5789,5327,7953,7581,7453,5392,5687,5830,5186,2195,9865,4915,5849,1538,2354,2015,1528,9540,2750,5231,9582,5740,7653,5607,2945,6531,0581,

Key,Digit,(6):,3086,2406,6957,5609,6453,5638,5467,7126,7649,2678,6879,9268,3164,0678,6751,1062,1465,4069,6347,2670,6943,4863,0896,6951,6498,6925,5864,6429,7640,7562,2506,3650,2316,5936,6901,2568,1086,2634,6805,2386,0846,1562,2690,2963,6729,3726,0176,1862,8746,6034,5687,5186,9865,1647,4160,3619,8631,6841,0936,6742,7613,6197,6918,0362,3796,0679,8637,1768,7653,6491,5607,0637,6531,6820,4162,

Key,Digit,(7):9725,9732,6957,5467,7349,7126,3472,7319,7649,2678,4157,1274,6879,4701,1702,0678,9724,4275,5837,6751,4270,7215,0753,1874,6347,2670,0937,1597,7134,9873,7908,7640,7562,8479,2578,4875,8074,7283,1729,7310,4795,0718,3740,1357,6729,1750,5789,3726,0176,5327,7953,7581,8746,7453,2807,5687,0794,7248,1647,0971,1287,6742,1387,7613,6197,3870,8197,3784,2750,5740,3796,0679,1723,8637,7419,9287,1768,7653,5607,0637,2370,

Key,Digit,(8):,3086,1928,2890,8491,9508,5638,2678,9842,6879,9268,1820,0678,5837,2583,1874,9803,4863,0896,6498,5864,2418,9873,7908,8250,8479,2578,4875,0841,4538,0832,8074,9835,2568,7283,1086,8159,6805,0485,2386,0846,4028,0189,3928,0718,1832,8425,5789,1983,1862,7581,8746,2807,5687,5830,5186,7248,9865,5849,1538,8631,1287,6841,3984,1528,1387,3870,8197,3784,0489,8340,8130,6918,9582,4813,8637,9287,1768,6820,0581,

Key,Digit,(9):,9725,1928,2890,9732,6957,8491,5609,9508,3940,4139,9042,7349,7319,7649,3950,4091,9842,6879,9268,1359,9724,9803,4069,9130,1905,3912,6943,0937,0896,1597,6951,6498,6925,4953,6429,9873,7908,8479,5936,6901,9835,1729,8159,4795,0189,3928,0932,2690,9205,2963,6729,5789,1983,7953,9412,5392,0794,2195,9865,4915,0971,5849,3619,1920,0936,3984,4392,6197,8197,9540,0489,6918,9582,3796,0679,7419,9287,6491,2945,

Double,Dec.,05,(AABC):

Key,Digit,(0):,0093,1109,7705,8810,7002,1061,0828,6460,6601,0045,4220,8480,9505,8508,0994,9404,3032,1150,4407,4460,4002,6500,3035,6550,7033,5530,2920,4804,0809,0988,0076,9901,8055,0996,6086,9930,8078,7073,2280,0477,3630,0797,0750,7207,4405,3380,1033,0970,6063,5100,8038,3100,3202,0034,1002,4055,1701,0205,0860,0393,8001,1401,7807,0920,0740,7202,0225,0306,2201,4033,1090,2990,6065,4014,5052,2030,8700,0767,0690,3500,0244,0160,0886,7030,0557,0515,7100,

Key,Digit,(1):7181,1559,1173,1109,3173,8810,5166,1061,6601,1886,1959,4212,9196,1641,5541,3211,8771,6361,6126,1514,1150,1922,6168,1612,3199,9197,6331,3431,4412,9901,1288,2162,5815,6155,5112,1318,1715,1998,1575,1033,1513,4131,8418,5100,3100,4914,3155,9192,5313,4112,2712,1484,1002,7211,1701,8981,5177,7174,1291,1617,6115,2133,8001,1401,7716,6113,1918,9166,2201,1917,1090,4014,1519,6716,1552,5441,8121,2231,7818,0160,1194,8115,9611,0515,7100,

Key,Digit,(2):,5235,3263,3229,8525,7002,0828,2677,7372,4220,4212,3211,7322,2446,7552,6126,2799,3032,1922,2988,4002,1612,2324,3273,2235,2920,7752,4412,6552,8852,1288,2162,4324,4542,2280,5112,2472,2925,6246,7207,2362,6826,9224,2494,3202,9192,2258,4112,2712,2787,1002,2899,2566,6422,7211,2388,2545,1291,0205,8286,4284,2133,2599,4299,3823,0920,7202,0225,9772,2201,3523,9932,2990,4828,2267,5052,1552,2030,8121,2231,0244,2676

Key,Digit,(3):5235,3263,0093,3229,3755,1173,4493,3453,3173,4933,6373,7372,7367,3445,3211,3735,7322,6361,3032,5385,6963,3643,3035,2324,3273,5536,3199,7033,2235,5530,5338,6331,3431,3739,8443,3693,9930,3998,4324,7073,3630,7347,1318,2362,3380,3893,6836,1033,3464,1513,6063,4131,9394,8038,3100,3202,3676,3155,7753,0034,5313,6939,8983,2388,3438,3783,9935,3536,0393,2133,6113,3823,9737,3886,7443,0306,8438,3523,7399,5953,9932,8538,4033,3743,2030,3500,2231,7030,

Key,Digit,(4):4493,3453,4933,6460,0045,4220,6747,4212,1641,5541,3445,2446,8480,4548,0994,1514,9404,4407,4460,3643,4002,4878,2324,7574,4804,3431,4412,8443,4847,4995,4324,4542,0477,7347,2472,5744,6246,4405,9224,8498,3464,4131,8418,9394,2494,4914,0034,4112,1484,4656,4055,4667,6422,2545,7174,3438,4284,4947,5458,5549,1401,9489,4299,0740,7443,8438,4033,3743,7446,4828,4014,8485,5441,9974,8494,0244,6499,1194,5564,

Key,Digit,(5):1559,5235,3755,8525,3453,7705,5166,9958,1959,0045,9659,5541,5685,3445,3735,7552,4548,9505,8508,1514,1150,5385,6500,3035,8785,6550,5536,7574,7657,2235,5530,7752,5338,6552,8852,8055,5576,5815,6155,4995,4542,5686,5112,6657,1715,2925,5744,0750,5988,1575,5688,4405,1513,5100,3155,7753,5313,7995,2258,4656,4055,2566,2545,5177,9935,0205,6115,3536,5458,5549,2599,0225,3523,5953,8538,7857,6065,1519,5977,5052,1552,8485,5441,3500,8115,9557,5895,0557,5564,0515,

Key,Digit,(6):,3263,5166,1061,2677,6460,6601,1886,6373,7867,6747,8676,9196,1641,9659,5685,7367,2446,6361,6126,6963,4460,3643,6168,6500,1612,6550,5536,7657,6331,0076,6552,3693,0996,6086,2162,5576,6155,9866,3630,5686,6657,6246,2362,5688,6826,7868,6836,3464,6063,3676,4656,6939,2566,4667,6422,8689,1617,8286,6115,3536,0860,7716,6113,6679,7967,3886,0306,9166,7446,9968,6065,2267,6716,0767,0690,0160,6499,2676,9611,0886,5564,

Key,Digit,(7):7181,3755,1173,7705,3173,7002,2677,6373,7867,7372,6747,8676,7367,3735,7322,8771,7552,2799,4407,4878,8785,3273,7574,7657,7033,7752,9197,3739,0076,8997,4847,5576,8078,7073,0477,0797,7347,6657,2472,1715,5744,0750,7207,1575,7868,7879,0970,3676,8798,7753,7995,2712,2787,4667,7211,1701,5177,7174,3783,1617,4947,7716,7807,6679,9737,0740,7967,7202,9772,7443,1917,7399,7857,3743,7446,5977,2267,6716,8700,9974,0767,7818,9557,2676,7030,0557,7100,

Key,Digit,(8):,7181,8525,8810,0828,9958,1886,7867,8676,5685,8771,8480,4548,8508,5385,2988,6168,4878,8785,5338,4804,0809,0988,8443,8997,4847,8852,1288,8055,6086,5815,9866,3998,8078,2280,5686,1318,1998,5988,5688,6826,3380,7868,7879,8498,3893,6836,8418,8038,8798,2258,1484,2787,2899,8689,8983,2388,8981,3438,3783,8286,4284,0860,5458,8001,9489,7807,1918,3823,3886,8438,8538,7857,9968,4828,8485,8700,8121,7818,8494,8115,0886,5895,

Key,Digit,(9):,1559,0093,3229,4493,1109,4933,9958,1959,9196,9659,9505,0994,2799,9404,6963,1922,2988,3199,2920,0809,0988,9197,3739,8997,9901,3693,0996,9930,9866,4995,3998,0797,1998,2925,5988,9224,7879,8498,3893,0970,9394,2494,4914,8798,9192,7995,6939,2899,8689,8983,8981,9935,1291,4947,0393,5549,9489,2599,1918,4299,0920,6679,9737,7967,9772,9166,1917,7399,5953,9932,1090,2990,9968,1519,5977,9974,0690,8494,6499,1194,9557,9611,5895,


Pairs,(AABB):

Key,Digit,(0):,3003,0990,0101,0022,0606

Key,Digit,(1):8811,0101,5115,1313,4141,6611,

Key,Digit,(2):,3223,9922,0022,5252,2277,2626,

Key,Digit,(3):3003,3388,3223,1313,9393,3773,6633,,

Key,Digit,(4):4994,4554,4141,8448,

Key,Digit,(5):9595,4554,5115,5252,5775,6565,

Key,Digit,(6):6767,0606,6611,6565,6633,2626,,

Key,Digit,(7):7887,6767,9977,3773,5775,2277,

Key,Digit,(8):8811,8989,3388,7887,8448,,

Key,Digit,(9):8989,0990,4994,9595,9922,9393,9977,

Triples,(AAAB):

Key,Digit,(0):,6660,0030,4000,9000,0222,1000,8808,0777,0600,

Key,Digit,(1):,1888,3313,1999,1000,1115,

Key,Digit,(2):,8222,2272,2622,3222,0222,5525,

Key,Digit,(3):3313,0030,3222,

Key,Digit,(4):4446,4000,7477,4445,6646,

Key,Digit,(5):7775,9555,5999,4445,1115,5525,

Key,Digit,(6):,4446,6660,2622,9666,6676,6646,6686,0600,

Key,Digit,(7):7775,2272,7477,6676,7977,7778,8878,0777,

Key,Digit,(8):,1888,8222,9888,8999,6686,8808,7778,8878,

Key,Digit,(9):,9000,9888,9555,8999,1999,9666,5999,7977,

Pairs,(AABB):3003,8811,8989,3388,0990,3223,4994,7887,9595,9922,4554,0101,6767,5115,1313,0022,4141,9393,0606,9977,5252,3773,6611,8448,5775,6565,6633,2277,2626,

Triples,(AAAB):,1888,7775,8222,3313,4446,6660,2272,0030,4000,9000,9888,9555,8999,1999,2622,7477,9666,5999,3222,0222,1000,4445,1115,6676,6646,6686,5525,8808,7977,7778,8878,0777,0600,

I know it's kind of long but, you can filter down what you don't need.

It's based on Every drawing for the past year of 2005. I made this last year and I will be doing another for 2006 just have to wait for some months to pass by.

I'm also working on a straight or hopefully straights more then boxes also.

I have finished typeing out about 2000 of the 10000 combinations...Yes every combination sorted out and then my program keeps track of everything and then spits out what would be the best straight/box hit based on multiple stratigies.

Good Luck to All

 P.S. Each line is based upon 1 digit but, if you combine let's say 2 digits and filter out the dups you get a nice stet of #'s.

PP

 

TopEnd of thread (1 page)

Welcome Guest

Your last visit: Sat, Oct 31, 2020, 2:28 am

Log In

Log InCancel

Forgot your username?

Forgot your password?